
A 6ll 12 ESTIMATING SYSTEM RELIAILITY: MONTE CARLO METNOS /
SENSITIVITY AMO ERRORS.. (U) NORTH CAROLINA UNIV AT
CHAPEL HILL CURRICULUM IN OPERATIONS R.. 0 S FISHMAN

UNCLSSIFIED JAN 87 UNC/ORSA/TR-87/1 AFOSR-TR-87-1092 F/G 12/4 NL

mlillllllllu



1.8.

Jill_!-2511111=6

Yi-R((,F R[ M ION T[; 1-HA

TA 1,RD ;"

III~.L31111 I 1111 %

-o A11=111



AD-A186 182 AFOSR-Tt. 8 7-10 92

OPERATIONS RESEARCH AND SYSTEMS ANALYSIS

Estimating System Reliability:
Monte Carlo Methods, Sensitivity and

Errors in Input Parameters

George S. Fishman

Technical Report No. UNC/ORSA/TR-87/1

January 1987

UNIVERSITY OF NORTH CAROLINA
AT CHAPEL HILL

O CT 07 1987

SOcEN
5M aw w

. -1 -o~zq = sah, M
enB 87 21 28



2%

INPCTE.

Estimating System Reliability:
Monte Carlo Methods, Sensitivity and ........ __

Errors in Input Parameters A.cuzloi or
,. I RA&I

D7IC TAB
George S. Fishman Unanneunced Q

Justification

Technical Report No. UNC/ORSA/TR-87/1 By
Distribution/

January 1987 . . .Availability Codes

Avail and/or

Dist special

Curriculum in Operations Research and
Systems Analysis I----

University of North Carolina at Chapel Hill

D11C

Prepared for invited presentation at the Second International
Workshop on Applied Mathematics and Performance Reliability
Models of Computer/Communication Systems, University of Rome,
Italy, May 25-29, 1987. %

This research was supported by the Air Force Office of Scientific
Research under grant AFOSR-84-0140. Reproduction in whole or
part is permitted for any purpose of the United States
Government.

..................... ......... ....I

1 ~ L~ : :
I I~ ~ ' ''in'



Abstract' -

In assessing the reliability of a binary-state system whose ,%I

components fail randomly and independently, it is often of

interest to compute the probability chat two terminals or nodes s

and t are connected and, more generally, the probability that all a

n nodes of a system are connected. In the case of multi-state

flow systems whose components have randomly determined capacity

flow levels, interest often focuses on the distribution of

maximal flow from a source node s to a terminal node t. Both the . -

binary-state connectivity model and the multi-state flow model

can be used to represent communication and transportation .. \

networks.

Since computing these probabilities belongs to the class of

#P-hard problems, no algorithms are known to solve them exactly

in time polynomial in the input. As an alternative method of solu-

tion, Monte Carlo sampling plans are being developed to estimate

these quantities, especially for large systems. This method has

the advantage that errors in evaluation are essentially indepen-

dent of the size of the system. This paper describes how these

Monte Carlo sampling plans are designed to use prior information

on the system under study to obtain estimates with specified accu-

racy at considerably less cost than crude Monte Carlo sampling

would require. Such plans are called variance reducing techni-

ques and represent an integral component of the Monte Carlo

method. Also, this prior information about system design enables

one to estimate, prior to performing any sampling, the maximal
sample size required to achieve a specified accuracy when using

the variance reducing techniques. These worst case bounds on

sample size are especially helpful when a limited computing

budget is available.

The paper also describes how Monte Carlo sampling data

accumulated to estimate the aforementioned reliability and flow

probabilities can be used to perform sensitivity analyses with
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only incident al additional cost. These analyses include estimat-

ing the effect of improving component reliability in the binary-

state case and the effect of increasing the probability that a

component operates at full capacity in the multi-state flow case.

Virtually all computations of system reliability measures N

assume that component reliability probabilities, which are the

input to the computation, are known with certainty. This is

rarely the case and the errors that do exist in these input data

directly affect the quality of the reliability computation,

whether it be an exact or a Monte Carlo based calculation. This

issue is discussed in detail. In particular, the paper describes

the error-induced bias and variance as functions of the

parameters of the system under study and shows how these measures

can adversely affect the interpretation of a reliability

calculation. :e.
].4

Key Words: maximal flow; Monte Carlo sampling; reliability;
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Introduction

-The computation of system reliability from component reliabi-

lities presents a host of non-trivial problems for systems of

varying sizes. These include the functional relationship between

the time required to compute system reliability and system size.

A second problem concerns how system reliability varies as

component reliabilities vary. A third problem concerns how

statistical errors in estimating component reliabilities affect

the accuracy of the system reliability computation.

This paper describes Monte Carlo techniques which provide

useful answers to the first two problems and presents an analysis

which establishes the potential seriousness of the third problem

in practice. The presentation summarizes research reported in

[3, 4 , 5, 6, 7, 8, 9, 10, 11, 12] To put the results in .

perspective, we begin with a description of the system

reliability concepts that are of interest to us.

1. Characterizations of System Reliability

Consider the network G - (V,E) with node set V and arc set E.

For convenience of exposition, assume that nodes represent com-

ponents that function perfectly and that arcs represent corn-

ponents that fail randomly and independently. To characterize G

more completely, we define:

r - number of distinct types of components

Fi(T) - probability that a component of type i functions

at time T 0 for i-I .... r.

F(T) - (FI ( ),...,Fr ( ))

E. - set of arcs that use components of type i
r

(E.nE -0 i*j E - U E.) ".
-1-J i- i

k. IE.i number of components of type i

k- (k1 r
e jth arc in E.ij 1 -
xij 1 if arc e functions, - 0 otherwise

k.
x. - x - number of arcs of type i that function

ij

•.•
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x - (x 1 ll..; ..... . ; X1X k 1 Xe .. k 2 X rl ... 'Xrk
.1 r

X - set of all arc states x

r k.-x.
P(x,kF(-t)) - 11 [F.( [1-F.(T)] I 1 xEX (1)

j... . i-i 1"

- probability mass function of states in X at time T

O(x) - 1 if the system functions, - 0 otherwise (2)

g(F(T)) - O %(x) P(x,k,F(T)) = probability that the system

xcX -

functions at time T. (3)

The interpretation of the system reliability g(F(t)) varies

with the type of system under study. For a binary-state system

with binary-state components, we consider the T-connectedness

problem. Let T denote a subset of V and let

*(x) - 1 if all nodes in T are connected when state x occurs

- 0 otherwise.

Then

g(F(T)) = probability that all nodes in T are (4)

connected at time T.

When T - {s,t I c V, this is called the s-t connectedness problem.

When T - V, it is called the all-terminal connectedness problem.
These representations are useful in studying the vulnerability of

communication systems.

One can also use the network representation to study the

reliability of multi-state systems with binary-state components.

Suppose G is a directed acyclic flow network with source node s

and terminal node t and that at time T each component of type i

has flow capacities zero with probability 1-F. (T) and b. >0 with
1 1

probability Fi(t). Let

IIJ, J" " °'.% "J, " 1== , , .. " , , m"j" = ' J% .% !'lt % .% ' . . = % . -''- ' -''..'' -. % '" .',''. -''-.% -"1.%
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g(F(T)) at all re 1-r I .l.-.,k' takes 0(k) times as long as com-

puting g(F(T)) at a single point.

To overcome this limitation to exact computation, one can

resort to a Monte Carlo sampling experiment wherein one

approximates g(F(T)) by an estimate whose error of approximation

decreases as the number of independent trials, on which the

estimate is based, increases. Many alternative sampling plans

exist and, in principle, one prefers a plan that exploits prior

knowledge about the system of interest to achieve an error of

specified size at less cost than alternative methods allow.

We now describe such a sampling plan that applies with small

modifications to the estimation of diverse reliability measures

such as (4), (5), (6), (7) and (8), when they are appropriate. For

conciseness of exposition, we assume that estimation is to be

performed for fixed F(T) and k and hereafter suppress these argu-

ments unless they are needed to avoid ambiguity. Reference [4]

provides a comparison of some of the Monte Carlo techniques to be

described here with the proposed Monte Carlo sampling plans of

other writers.

3. Using Prior Information

Assume that sufficient prior information exists about

the system under study to enable one to identify two binary

functions {11 (x) xcX} and { 2 (x) xEX} with the property

0 (x) S O(x) 02(x)(9
1. 2.

where O(x) is defined in (2). Let

S(x) P(x)

x X - "

so that

g S g (10)

Ncw let

'ml
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02 ( x )  01€ (x)

Q(x) = P(x) xIX, (11)
- g2 - g ~ -

which is a probability mass function. Suppose that one can

compute gl and g 2 exactly and at reasonable cost as a function of

the size of G. Then the ordering relationships (9) and (10)

together with the probability mass function {Q(x) xEX} in (11)

allow one to benefit from two alternative modes of sampling.

3.1 Importance Sampling [3,6,7,8,10]

Here one concentrates sampling in the region of the state

space X = IxEXI 1 (x)=O and 0 2(x)=I} as follows:

1. Set S4-0.

2. On each of K independent trials:

2a. Sample x from {Q(x) xEX}.

2b. Compute O(x).

2c. Set S S+O(x).

3. Compute summary statistics

3a. K g1  + (g 2-gl)S/K.

3b. V(g K) - 2-9K)(gK-g1)I(K-1).

Here gK is an unbiased estimator of g with

var gK = (g 2 -g)(g-gl)/K (12)

and V(gK) is an unbiased estimator of var gK"

One way to assess the benefit of this sampling plan is to

compare it with the results for a crude Monte Carlo sampling

estimate gK of g, using {P(x)}. This too is unbiased but with

var gK = g(1-g)/K. (13)

The ratio of variances is then

I

• '.'.i- . ". -. v ..-.',":" "- .-" .. ,rr .. ".. ............... F v .... . .t ..... ..... ... :".'" ".
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RI = var gK/var gK

a 1/ {g2-g 1-2[g 1 g2 (1-g )(1-g 2)] ' (14)

Since the lower bound (14) is computable prior to sampling, one

can obtain a clear understanding of the least favorable result

that the sampling plan can induce before employing it.

The variance ratio merely measures one aspect of the impor-

tance sampling plan. Let c(P) and c(Q) denote the mean times per

replication of employing sampling plans based on {P(x)} in (1)

and {Q(x)} in (11) respectively. Note that each of these includes

the cost of computing (x). Then

W c (P) "-.
WI = -c(Q) I

C-a

denotes the mean time required to achieve the same variance with

crude Monte Carlo sampling as one obtains in one unit of time

with the importance sampling plan. For importance sampling to be

beneficial, one requires WI>1, preferably considerably greater

than 1. Reference [3] describes how to construct {Q(x)} and how to

sample from it for T-connectivity, and [10] describes the

corresponding construction for the reliability measure g(F(T),z)

in (5). In both cases, the ability to determine sets of edge-

disjoint minimal spanning trees and minimal cutsets enables one

to identify the binary functions {P1 (x)} and 0 2 (x)} needed to

achieve the variance reduction. References [3] amd [10] also

describe how to compute confidence intervals for g that hold for

finite K. These considerably improve on normal confidence

intervals whose use inevitably introduces an additional error of

approximation. .

.%

; . .2." .,, ."- 2 : '2" , " f")¢f ¢ ' '¢,%2 2 2 ".% ', .. % '¢"J'.
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3.2 Control Variates [9]

This plan uses inequalities (9) and (10), but samples the

state vector x from {P(x)} in (1) instead of from {Q(x)} in (11).

In particular:

1. Set S 0, SI O and S2 +O.

2. On each of K trials:

2a. Sample x from {P(x)}.

2b. Compute 01 (x), O(x) and 2(x).

2c. Set S 1 S1+0 1 (x), S -S+O(x) and S24-S2 02(x).

3. Compute summary statistic

S(g 2-g 1 )+(S/K-g2)(S 1-Kg 1 )+(g 1 -S/K)(S 2-Kg2)-g (
gK + (K+1)(g 2 -g1 ) - 1 (15)

The resulting statistic is an unbiased estimator of g with

lir K var gK = (g2-g)(g-gl)/(g 2-g1 ). (16)
K-®

An unbiased estimator of var gK is also given in [10].

Observe that for large K

var gK - var gK/(g 2 -g 1 ) > var gK" (17)

Although sampling from IQ(x)} for gK consumes more time than samp-

ling from jP(x)j for gK does, experience has shown that importance

sampling tends to be more statistically efficient than the method

of control variates is for reliability estimation at a single

point. However, in the network flow model the control variate

approach produces sample data that allow estimation at more than

one flow point z whereas importance sampling does not. In parti-

cular, [10] shows how this can be done in estimating the comple-

mentary distribution of maximal s-t flow 1g(F(T),z)j at a set of

points zeZ. Confidence intervals for jg(F(T),z) zcZ} are also

given there.
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4. Determining the Worst Case Sample Size

In addition to producing a statistically more efficient

estimator than crude Monte Carlo sampling does, an effective

Monte Carlo technique also provides information that enables one

to determine how large a sample size is necessary to achieve an

estimate with a specified upper bound on statistical error. Both

the importance sampling and control variate approaches provide

such a result based on a worst case scenario.

Let X , X... X denote i.i.d. random variables with ± = EX. and
K1

pr(a<Xi~b) = 1 for all i=I,...,K. Then for X B (p-a)/(b-a) and

£<min(A,I-A), Hoeffding (1963) shows that

pr(XK-P>c) < R K(X /(b-a))

and

Kpr(-XK U>E/(b-a)) < R (1-X,E/(b-a))-[

K<

where

R(A.,) 1 (2 +A+e ( 1x )!1-;-O O<O<min(X,1-,), O<A<1.

Note that R has a unique minimum for A in [0,1-c/(b-a)].

Suppose that one wants to determine the minimal sample size

K* such that

pr(IXK,-UI< ) > 1 - (18)

for sampling absolute accuracy E and confidence level 1 - a. Then

collecting

K - ln(a/2)/max ln R(X,E/(b-a)) (19)

observations assures the absolute error bounds in (18).

Now suppose that V>O and consider the relative error -'"

criterion

'p.'

.4
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pr(IXK*- . < I) . 1 - X (20

Then K* is again computable as in (19) with cp replacing c so that

*a a
K = ln(a/2)/min[ max in R(X,( _- +X)E), max in R(I-X,(- -X)E)]. (21)

b-a %Vb-a0<A<I 0<A<I

For the reliability problem using importance sampling with

XK = gK, a = g, and b = g 2 , the significance of (19) and (21) lies

in the realization that one can simply take these numbers of

observations and be guaranteed the corresponding specified

accuracy without any subsequent analysis after computation of gK"

A worst case analysis also exists for the control variate

sampling plan. Let

r(X,E,h,gl,g 2 ) - e-hE 1-g +g 1+(g2-g )[Xe (1-X)h+(l-X)e-Xh]I

(22)
g-gl1

X - 91, h>O 0<c <  min(X,1-X).

g 2 -g
1

To ensure an absolute accuracy E with probability > 1 - a, one

needs no more than

K - ln(a/2)/min{ max [in min R(X,h,gl,g 2 )], max [in min R(1-X,h,g ,g 2)]} (23)

%0<X <I h>0 0<X< h>0

observations. In spite of its formidable appearance, one can

evaluate (23) using a modification of algorithm A in [9].

5. Sensitivity [12]

In addition to estimating the reliability g(F(T)) at a fixed
time T, the Monte Carlo method provides a way, at small marginal

cost, of estimating the more general reliability function

{g(q) q-(ql,...,qr)EW} where qi = probability that a component of

type i functions l=1,...,r and W is a set of component reliability

vectors of interest. Here qi for component i may be a function of

time (i.e. qi=Fi(T)) or it may reflect potential component relia-

bility improvements the effect of which on system reliability is

*.|
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of' interest.

With this change of' nomenclature, one has

P~~~) r x k (2's)i
-~~<q - 11 q~ (1-q (24

and

g(q) = X (x) P(x,k,q) qeW. (25)

- XEX-

Suppose that one elects to perf'orm K independent replications

with component reliability p using [Q(x,k,p)} (importance sampl-

* ing). Let x~j) denote the sample component state vector on repli-

cation j . The estimators

* ~ Px ,k,q)

*9 g,(q) - g-q + [g (p)-g (p)]K-' - x ,kp (26)

and

-1 KP(x ,k,q)

g2 (q) g g(q) - [g (p)-g (p)]K c i- (x'1 ) () (27)
j=1 - P(x ,k,p)

* are unbiased estimators of' g(q) with

Kv 1(q) =K var i1K (q) = {c[g 2(p).g1 (p)][g(q )-g 1(q )]-[g(q)-g 1(q)][g (q)-g (q)]}

~ g2 q-gq][g(q)-gl(q)] (28)

Kv(q K var g2 (q) ( c~g2 (p)-g 1 (p)][g 2 (q )-g(q )[g(q)-g(q)Jt 2 q)g(q).I

+ [g2(q)-g(q)]Lg(q)-g1(q)] (29)

Kc (q) =K COV~ig (, (q) [g (q)-g(q)]Cg(q)-g (q)] (30)

121.2
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where

r 22k.
c [q2 /P +(1-q)2 /(1-p )] .

i-i 1

q (q q

and

* 2qi q qi ecPii I. ..r

In principle, (26) and (27) enable one to estimate g(q) for

all qcW from the single set of replications obtained by sampling

with component reliabilities p. Since [g 2 (q)-g(q)][g(q)-g1 (q)]

in (28) and (29) is the variance of the point estimator gK(q)

based on sampling with component reliabilities q, the quantities

in curly brackets are the incremental changes in variances that

result from sampling with p instead of q. Of most importance, it

is entirely possible for one of these quantities to be negative,

implying that an estimate of g(q) with smaller variance than gK (q)

is possible.

To put this last observation in perspective, consider the

estimator

- e( - K(q) + (1-e)g 2 K(q) O.os1. (31)

which achieves minimal variance by choosing

0 - 1 if v1 (q)Sc 1 2 (q)

v2 (q)-c 2 (q)

v 1 (q)+v 2 (q)-2c 1 2 (q) v 1 (q),v 2 (q)c 1 2 (q) (32)

- 0 v 2 (q)Sc1  (q).

Observe that v 1 (q)Sc 1 2 (q) implies that g1K(q) in (26) has smaller

variance than gK(q) in (12) whereas v 2 (q) c 1 2 (q) implies that

2K (q) in (27) has smaller variance than gK(q) in (12).
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Experience with this method of estimation indicates that for

moderately high component reliabilities v 2 (q)<c 1 2 (q) is often

satisfied with substantial reductions in variance at each q in W, S,

as compared to the results from importance sampling at a point in

Section 3.1. Moreover, all these estimates follow from just one

sampling experiment at p. The development of a confidence region

for the reliabilty function {g(q) qcW} is now underway, as is a

study to determine the optimal p at which to sample from the com-

ponent state space X. 6%

6. Errors in Input Parameters [11]

Regardless of whether an exact or Monte Carlo method is used

in computing system reliability g(q), it is customary to assume

that the numerical values of the component reliabilities

are exact. In reality they are not, and, as we now
r

show that ignoring this potential source of error can give a

misleading interpretation to the final numerical value computed

for g(q).

Suppose one tests n i components of type i for i=1 , ,r .

Each test begins with a new component functioning. Let Z

denote the outcome of the jth test of component of type i where

Zij - 1 if the component functions at the end of the test period

and Zij - 0 if the component fails prior to the end of the test

period. Presumably each component of type i is tested under

identical conditions that resemble the system environment. Then

one has the data vectors Z. - fZ i ,...,Z. I for i=I,...,r where
1

the elements of Z. are independent and identically distributed

with q. EZ.. j-1,...,n i and Z1 1 ... ,Z are independent. Also,

i'
n.

-q n z  (33)i " ni j ij

is the maximum likelihood estimator of qi with

. " .
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qi - Eq i

var qi = qi(1-qi ) K

k  (1/nL)(k1)2 k>2 as n

Let = (q 1 ... ,qr). Then it is not unusual to compute

system reliability as g(q) with no mention of the sampling error

that replacing q by q induces. Unfortunately, the results in

Fishman (1987) show that

Eg(q) - g(q) - w(k,q,n) as mi n i. (34)
- - 1<i~r

and

var g(q) v(k,q,n) as min (35)
1 i~r

where

n (n ,...,nr), :'
1 r

2_°

r k (ki-1) -2xi (ki-1)qi+xi (xi- 1)  q (1-q)
w(k,q,n) - I X *(x)P(x,k,q)[ -]} (36)

- XEX xEX - 2-(1q 2 2n.

and

v(k,q,n) = r I . (x)P(x,k,q) [xI-kIq q(1-q)
[i-1 xX qi( 1-qi n1  (37)

Expressions (34) and (35) imply that even in the case of an exact

computation (no Monte Carlo sampling), a substantial degree of

statistical error can arise. Clearly g(q) is biased. Moreover,

this bias (36) and the variance (37) grow quadratically with

k . . ,kr the number of components of each type used in the

system and linearly with the number r of different types of

components.

%".

Ile

% %4
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Of special interest is the observation that if all

components of type i are in series and qi replaces qi in the

reliability computation, then the resulting reliability

overstates the true reliability. Conversely, an understatement

of reliability occurs when all components of type i are in

parallel.

'

1
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Since computing these probabilities belongs to the class of
#P-hard problems, no algorithms are known to solve them exactly in
time polynomial in the input. As an alternative method of solu-
tion, Monte Carlo sampling plans are being developed to estimate
these quantities, especially for large systems. This method has
the advantage that errors in evaluation are essentially indepen-
dent of the size of the system. This paper describes how these
Monte Carlo sampling plans are designed to use prior information
on the system under study to obtain estimates with specified accu-
racy at considerably less cost than crude Monte Carlo sampling
would require. Such plans are called variance reducing t.echniques
and represent an integral component of the Monte Carlo method.

Also, this prior information about system design enables one to
estimate, prior to performing any sampling, the maximal sample

size required to achieve a specified accuracy when using the
variance reducing techniques. These worst case bounds on sample

size are especially helpful when a limited computing budget is
available. .r

The paper also describes how Monte Carlo sampling data accumu-
lated to estimate the aforementioned reliability and flow probabi-
lities can be used to perform sensitivity analyses with only inci-
dental additional cost. These analyses include estimating the
effect of improving component reliability in the binarystate case

and the effect of increasing the probability that a component
operates at full capacity in the multi-state flow case.

Virtually a"l computations of system reliability measures
assume that component reliability probabilities, which are the
input to the computation, are known with certainty. This is
rarely the case and the errors that do exist in these input data

directly affect the quality of the reliability computation,
whether it be an exact or a Monte Carlo based calculation. This

issue is discussed in detail. In particular, the paper describes
he error-induced bias and variance as functions of the parameters

the system under study and shows how these measures can adver- %

aly affect the interpretation of a reliability calculation.
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